The Laurent Phenomenon

Antoine de Saint Germain

November 15, 2024

Chapter 1

Matrix mutation

Definition 1.1. 1) An $n \times n$ matrix $B = (b_{i,j})$ with (say) rational entries is called skew-symmetrisable if there exists a diagonal matrix $D = \text{diag}(d_1, \ldots, d_n)$ with $d_i \in \mathbb{Z}_{>0}$ such that DB is skew-symmetric, i.e.

$$d_i b_{i,j} = -d_j b_{j,i}, \qquad \forall i, j \in [1, n].$$

2) A mutation matrix is a skew-symmetrisable matrix with integer entries.

Definition 1.2. Let B be an $n \times n$ skew-symmetrisable matrix. The mutation of B in direction $k \in [1, n]$ is the matrix $\mu_k(B) = (b'_{i,j})$ defined by

$$b_{i,j}' = \begin{cases} -b_{i,j} & \text{if } i = k \text{ or } j = k, \\ b_{i,j} + b_{i,k}b_{k,j} & \text{if } b_{i,k} > 0 \text{ and } b_{k,j} > 0, \\ b_{i,j} - b_{i,k}b_{k,j} & \text{if } b_{i,k} < 0 \text{ and } b_{k,j} < 0, \\ b_{i,j} & \text{otherwise.} \end{cases}$$

Lemma 1.3. Let B be an $n \times n$ skew-symmetrisable matrix, and fix $k \in [1, n]$. Then the following hold:

- 1. $\mu_k(B)$ is skew-symmetrisable, with the same diagonal matrix D.
- 2. $\mu_k(\mu_k(B)) = B$.
- 3. If B is skew-symmetric, then $\mu_k(B)$ is skew-symmetric.
- *Proof.* 1. Fix $k \in [1, n]$, and let $i, j \in [1, n]$ be arbitrary. By definition of $\mu_k(B)$ and the skew-symmetry of B, we have

$$b'_{j,i} = \begin{cases} -b_{j,i} & \text{if } i = k \text{ or } j = k, \\ b_{j,i} - b_{j,k} b_{k,i} & \text{if } b_{i,k} > 0 \text{ and } b_{k,j} > 0, \\ b_{j,i} + b_{j,k} b_{k,i} & \text{if } b_{i,k} < 0 \text{ and } b_{k,j} < 0, \\ b_{j,i} & \text{otherwise.} \end{cases}$$

Suppose we are in the first case, i.e. i = k or j = k. Then

$$d_ib'_{i,j} = d_i(-b_{i,j}) = -d_j(-b_{j,i}) = -d_jb'_{j,i}.$$

Now suppose we are in the second case, i.e. $b_{i,k} > 0$ and $b_{k,j} > 0.$ Then

$$\begin{split} d_i b'_{i,j} &= d_i (b_{i,j} + b_{i,k} b_{k,j}) \\ &= -d_j b_{j,i} - d_k b_{k,i} b_{k,j} \\ &= -d_j b_{j,i} - d_k b_{k,i} b_{k,j} \\ &= -d_j b_{j,i} + d_j b_{k,i} b_{j,k} \\ &= -d_j (b_{j,i} - b_{j,k} b_{k,i}) \\ &= -d_j b'_{j,i}. \end{split}$$

The remaining two cases are similar, and we omit them.

- 2. This is a direct computation.
- 3. This follows from 1.