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Chapter 1

Field-valued patterns

Throughout this document, we will study frieze patterns of finite height. This terminology (as
compared to finite width or finite order) is unconventional but more convenient for formalisation.
For us, the height of a frieze pattern corresponds to the number of rows, including the rows of
ones but excluding the rows of zeros. Throughout this section, we fix an arbitrary field 𝐹 .

Definition 1.1. Fix 𝑛 ∈ ℕ∗. A map 𝑓 ∶ {0, 1, … , 𝑛, 𝑛 + 1} × ℤ ⟶ 𝐹 is called an 𝐹 -valued
pattern of height n if,

1) for all 𝑚 ∈ ℤ, 𝑓(0, 𝑚) = 𝑓(𝑛 + 1, 𝑚) = 0,
2) for all 𝑚 ∈ ℤ, 𝑓(1, 𝑚) = 𝑓(𝑛, 𝑚) = 1, and
3) for all (𝑖, 𝑚) ∈ {1, 2, … , 𝑛} × ℤ, we have

𝑓(𝑖, 𝑚)𝑓(𝑖, 𝑚 + 1) = 1 + 𝑓(𝑖 + 1, 𝑚)𝑓(𝑖 − 1, 𝑚 + 1). (1.1)

An 𝐹 -valued pattern 𝑓 of height 𝑛 is said to be nowhere zero if 𝑓(𝑖, 𝑚) ≠ 0, for all 𝑖 ∈ {1, … , 𝑛}
and for all 𝑚 ∈ ℤ.

Lemma 1.2. Let 𝑓 be a nowhere-zero 𝐹 -valued pattern of height 𝑛. For all 𝑚, we have

𝑓(𝑖 + 2, 𝑚) = 𝑓(2, 𝑚 + 𝑖)𝑓(𝑖 + 1, 𝑚) − 𝑓(𝑖, 𝑚), 𝑖 ∈ {0, … , 𝑛 − 1}
𝑓(𝑖, 𝑚) = 𝑓(𝑛 − 1, 𝑚)𝑓(𝑖 + 1, 𝑚 − 1) − 𝑓(𝑖 + 2, 𝑚 − 2), 𝑖 ∈ {0, 𝑛 − 1}.

Proof. We begin by proving the first statement. That is, we prove

𝑃𝑖 ∶ ∀𝑚 ∈ ℤ, 𝑓(𝑖 + 2, 𝑚) = 𝑓(2, 𝑚 + 𝑖 + 1)𝑓(𝑖 + 1, 𝑚) − 𝑓(𝑖, 𝑚),

for 𝑖 ∈ {0, … , 𝑛 − 1}. We do so by induction on 𝑖.
Base case 𝑃0: We have that for all 𝑚 ∈ ℤ, 𝑓(2, 𝑚)𝑓(1, 𝑚) − 𝑓(0, 𝑚) = 𝑓(2, 𝑚 + 1) ∗ 1 − 0 =

𝑓(2, 𝑚).
Inductive hypothesis. Suppose that our claim holds for some 𝑖 ∈ {0, … , 𝑛 − 2} fixed. Then,

𝑓(𝑖 + 3, 𝑚)𝑓(𝑖 + 1, 𝑚 + 1) = 𝑓(𝑖 + 2, 𝑚)𝑓(𝑖 + 2, 𝑚 + 1) − 1
= 𝑓(𝑖 + 2, 𝑚)(𝑓(2, 𝑚 + 𝑖 + 1)𝑓(𝑖 + 1, 𝑚 + 1) − 𝑓(𝑖, 𝑚 + 1)) − 1
= 𝑓(𝑖 + 2, 𝑚)𝑓(2, 𝑚 + 𝑖 + 1)𝑓(𝑖 + 1, 𝑚 + 1) − (𝑓(𝑖 + 2, 𝑚)𝑓(𝑖, 𝑚 + 1) + 1)
= 𝑓(𝑖 + 2, 𝑚)𝑓(2, 𝑚 + 𝑖 + 1)𝑓(𝑖 + 1, 𝑚 + 1) − 𝑓(𝑖 + 1, 𝑚)𝑓(𝑖 + 1, 𝑚 + 1).

Since 𝑓 is nowhere-zero, we may divide both sides of the equation by 𝑓(𝑖 + 1, 𝑚 + 1) to obtain
the desired equality.
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The second statement is proved almost identically. Namely, we prove

𝑄𝑖 ∶ ∀𝑚 ∈ ℤ, 𝑓(𝑖, 𝑚) = 𝑓(𝑛 − 1, 𝑚)𝑓(𝑖 + 1, 𝑚 − 1) − 𝑓(𝑖 + 2, 𝑚 − 2),
by induction on 𝑖, starting with 𝑖 = 𝑛 − 1 and proving the inductive step 𝑄𝑖 ⇒ 𝑄𝑖−1.

Base case 𝑄𝑛−1: for all 𝑚 ∈ ℤ, 𝑓(𝑛−1, 𝑚)𝑓(𝑛, 𝑚−1)−𝑓(𝑛+1, 𝑚−2) = 𝑓(𝑛−1, 𝑚)∗1−0 =
𝑓(𝑛 − 1, 𝑚).

Inductive hypothesis. Suppose that 𝑄𝑖+1 holds for some fixed 𝑖 ∈ {0, … , 𝑛 − 2}. Then,

𝑓(𝑖, 𝑚)𝑓(𝑖 + 2, 𝑚 − 1) = 𝑓(𝑖 + 1, 𝑚 − 1)𝑓(𝑖 + 1, 𝑚) − 1
= 𝑓(𝑖 + 1, 𝑚 − 1)(𝑓(𝑖 + 2, 𝑚 − 1)𝑓(𝑛 − 1, 𝑚) − 𝑓(𝑖 + 3, 𝑚 − 2)) − 1
= 𝑓(𝑖 + 1, 𝑚 − 1)𝑓(𝑛 − 1, 𝑚)𝑓(𝑖 + 2, 𝑚 − 1) − (𝑓(𝑖 + 1, 𝑚 − 1)𝑓(𝑖 + 3, 𝑚 − 2) + 1)
= 𝑓(𝑖 + 1, 𝑚 − 1)𝑓(𝑛 − 1, 𝑚)𝑓(𝑖 + 2, 𝑚 − 1) − 𝑓(𝑖 + 2, 𝑚 − 2)𝑓(𝑖 + 2, 𝑚 − 1).

Again since 𝑓 is nowhere-zero, dividing by 𝑓(𝑖 + 2, 𝑚 − 1) on both sides we obtain 𝑄𝑖.

Proposition 1.3. Let 𝑓 be a nowhere-zero 𝐹 -valued pattern of height 𝑛. Then, for all 𝑚 ∈ ℤ
and all 𝑖 ∈ {0, … , 𝑛 + 1}, we have

𝑓(𝑖, 𝑚) = 𝑓(𝑖, 𝑚 + 𝑛 + 1).
Proof. We prove a stronger statement, called the glide symmetry of frieze patterns. First, consider
the map 𝜌𝑛 ∶ {0, 1, … , 𝑛 + 1} × ℤ ⟶ {0, 1, … , 𝑛 + 1} × ℤ given by

𝜌𝑛(𝑖, 𝑚) = (𝑛 + 1 − 𝑖, 𝑚 + 𝑖). (1.2)

We show that every nowhere-zero 𝐹 -valued pattern of height 𝑛 is 𝜌𝑛-invariant, i.e. satisfies

𝑓(𝜌𝑛(𝑖, 𝑚)) = 𝑓(𝑖, 𝑚), ∀(𝑖, 𝑚) ∈ {0, 1, … , 𝑛 + 1} × ℤ.
The proposition will then follow by observing that 𝜌2

𝑛 ∶ (𝑖, 𝑚) ↦ (𝑖, 𝑚 + 𝑛 + 1). Thus, consider
the statement

𝑃𝑖 ∶ ∀𝑚 ∈ ℤ, 𝑓(𝑖, 𝑚) = 𝑓(𝑛 + 1 − 𝑖, 𝑚 + 𝑖),
where 𝑖 ∈ {0, … , 𝑛 + 1}. To prove that 𝑃𝑖 holds for all 𝑖, it is sufficient to prove that 𝑃0, 𝑃1 hold,
and that 𝑃𝑖 ∧ 𝑃𝑖+1 ⇒ 𝑃𝑖+2.

𝑃0 ∶ for all 𝑚 ∈ ℤ, 𝑓(0, 𝑚) = 0 = 𝑓(𝑛 + 1, 𝑚).
𝑃1 ∶ for all 𝑚 ∈ ℤ, 𝑓(1, 𝑚) = 1 = 𝑓(𝑛, 𝑚 + 1).
Now suppose we are given 𝑖 ∈ {0, 1, … , 𝑛 − 1} such that 𝑃𝑖 and 𝑃𝑖+1 hold. Then, for any

fixed 𝑚 ∈ ℤ, we have

𝑓(𝑖 + 2, 𝑚) = 𝑓(2, 𝑚 + 𝑖)𝑓(𝑖 + 1, 𝑚) − 𝑓(𝑖, 𝑚)
= 𝑓(𝑛 − 1, 𝑚 + 𝑖 + 2)𝑓(𝑛 − 𝑖, 𝑚 + 𝑖 + 1) − 𝑓(𝑛 + 1 − 𝑖, 𝑚 + 𝑖)
= 𝑓(𝑛 − 𝑖 − 1, 𝑚 + 𝑖 + 2).

Corollary 1.4. Let 𝑓 be a nowhere-zero 𝐹 -valued pattern of height 𝑛. Then, Im(𝑓) ∶= {𝑓(𝑖, 𝑚) ∶
𝑖 ∈ {1, … , 𝑛}, 𝑚 ∈ ℤ} is a finite set.

Proof. Consider the finite set 𝒟 = {(𝑖, 𝑚) ∶ 𝑖 ∈ {1, … , 𝑛}, 𝑚 ∈ {0, … , 𝑛}}. By Proposition 1.3,

Im(𝑓) = {𝑓(𝑖, 𝑚) ∶ (𝑖, 𝑚) ∈ 𝒟},
and the right-hand side is obviously finite.
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Chapter 2

Pandean sequences, flutes and the
Fibonacci sequence

Definition 2.1. A sequence (𝑎𝑘), indexed by ℕ∗ and consisting of positive integers is called
pandean if 𝑎1 = 1 and if, for every 𝑘 > 1, we have

𝑎𝑘 ∣ 𝑎𝑘−1 + 𝑎𝑘+1.

Given a pandean sequence (𝑎𝑘), if there exists a positive integer 𝑛 such that 𝑎𝑘 = 𝑎𝑘+𝑛−1 for all
𝑘 ∈ ℕ, the tuple (𝑎1, … , 𝑎𝑛) is called a Pan flute, or simply a flute, of height 𝑛. The set of all
flutes of a given height 𝑛 is denoted Flute(𝑛).

Note that in a flute of height 𝑛, the first and last entries are equal to 1.

Lemma 2.2. For any positive integer 𝑛, the set Flute(𝑛) is non-empty.

Proof. It is clear that the constant sequence consisting entirely of ones is pandean, and such a
pandean sequence gives rise to a flute of height 𝑛 for any 𝑛.

Recall that the Fibonacci sequence (𝐹𝑘)𝑘∈ℕ is defined by 𝐹0 = 0, 𝐹1 = 1 and the recursive
formula

𝐹𝑘 = 𝐹𝑘−1 + 𝐹𝑘−2.
Lemma 2.3. 1) If 𝑛 is odd, the 𝑛-tuple

(𝐹2, 𝐹4, 𝐹6, … , 𝐹𝑛−1, 𝐹𝑛, 𝐹𝑛−2, 𝐹𝑛−4, … , 𝐹5, 𝐹3, 𝐹1),

is a Pan flute of height 𝑛.
2) If 𝑛 is even, the 𝑛-tuple

(𝐹2, 𝐹4, 𝐹6, … , 𝐹𝑛−2, 𝐹𝑛, 𝐹𝑛−1, 𝐹𝑛−3, … , 𝐹5, 𝐹3, 𝐹1),

is a Pan flute of height 𝑛.

Proof. These are a tedious but straightforward calculation.

Lemma 2.4. In a flute (𝑎1, … , 𝑎𝑛), one of the following two statements holds.
1) 𝑎2 = 1 or 𝑎𝑛−1 = 1.
2) There exists an index 𝑖 ∈ {2, … , 𝑛 − 1} such that 𝑎𝑖 = 𝑎𝑖−1 + 𝑎𝑖+1.
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Proof. Suppose that 1) does not hold. In particular, 𝑎2 − 𝑎1 > 0 and 𝑎𝑛 − 𝑎𝑛−1 < 0. We prove
that statement 2) holds by contradiction. Thus, assume that for all 𝑖 ∈ {2, … , 𝑛 − 1}, we have
𝑎𝑖 ≠ 𝑎𝑖−1 + 𝑎𝑖+1. Since the 𝑎𝑖 are positive integers, we necessarily have 𝑎𝑖−1 + 𝑎𝑖+1 ≥ 2𝑎𝑖 for all
𝑖 ∈ {2, … , 𝑛 − 1}. Thus, for a given 𝑖, we have

𝑎𝑖+1 − 𝑎𝑖 = 𝑎𝑖+1 + 𝑎𝑖−1 − 𝑎𝑖−1 − 𝑎𝑖 ≥ 2𝑎𝑖 − 𝑎𝑖−1 − 𝑎𝑖 = 𝑎𝑖 − 𝑎𝑖−1.

Gathering these inequalities, we obtain

𝑎𝑛 − 𝑎𝑛−1 ≥ 𝑎𝑛−1 − 𝑎𝑛−2 ≥ … ≥ 𝑎2 − 𝑎1 > 0,

which contradicts the fact that 𝑎𝑛 − 𝑎𝑛−1 < 0.

Proposition 2.5. Fix a positive integer 𝑛, and let (𝑎1, … , 𝑎𝑛) ∈ Flute(𝑛). For any 𝑖 ∈
{1, … , 𝑛}, we have 𝑎𝑖 ≤ 𝐹𝑛.

Proof. Consider the statement

𝑃𝑛 ∶ If (𝑎1, … , 𝑎𝑛) ∈ Flute(𝑛), then 𝑎𝑖 ≤ 𝐹𝑛 for all 𝑖 ∈ {1, … , 𝑛}.

The proposition claims that 𝑃𝑛 holds for all 𝑛 ∈ ℕ∗. We prove this by induction on 𝑛. The base
case 𝑛 = 1 is clear, since the only flute of height 1 is (1), and 𝐹1 = 1. Similarly, the case 𝑛 = 2 is
clear, since the only flute of height 2 is (1, 1), and 𝐹2 = 1. Now, assume that 𝑃𝑘 holds for all 𝑘 up
to and including a fixed 𝑛 ∈ ℕ∗. Let (𝑎1, … , 𝑎𝑛+1) ∈ Flute(𝑛+1). By Lemma 2.4, we have either
𝑎2 = 1 or 𝑎𝑛 = 1, or there exists an index 𝑖 ∈ {2, … , 𝑛} such that 𝑎𝑖 = 𝑎𝑖−1 + 𝑎𝑖+1. Suppose
that 𝑎2 = 1. Then (𝑎1, 𝑎3, … , 𝑎𝑛+1) ∈ Flute(𝑛), and so by the induction hypothesis, 𝑎𝑖 ≤ 𝐹𝑛 for
all 𝑖 ∈ {1, … , 𝑛}. Since 𝐹𝑛 ≤ 𝐹𝑛+1, we have 𝑎𝑖 ≤ 𝐹𝑛+1 for all 𝑖 ∈ {1, … , 𝑛}. A similar argument
applies if 𝑎𝑛 = 1. Now, suppose that there exists an index 𝑖 ∈ {2, … , 𝑛} such that

𝑎𝑖 = 𝑎𝑖−1 + 𝑎𝑖+1. (2.1)

We claim that (𝑎1, 𝑎2, … , 𝑎𝑖−1, 𝑎𝑖, 𝑎𝑖+1, … , 𝑎𝑛+1) ∈ Flute(𝑛), where 𝑎𝑖 means we omit 𝑎𝑖. Again
by the induction hypothesis, we have that

𝑎𝑗 ≤ 𝐹𝑛, 𝑗 ≠ 𝑖. (2.2)

It remains to show that 𝑎𝑖 ≤ 𝐹𝑛+1. To see this, note that (2.1) and (2.2) together imply it is
sufficient to show that either 𝑎𝑖−1 or 𝑎𝑖+1 is bounded above by 𝐹𝑛−1. But recall that 𝑎𝑖−1 and
𝑎𝑖+1 both belong to the flute (𝑎1, 𝑎2, … , 𝑎𝑖−1, 𝑎𝑖, 𝑎𝑖+1, … , 𝑎𝑛+1) of height 𝑛. Thus, the conditions
of Lemma 2.4 apply to this flute, so that by a reduction argument identical to the one above,
there exists a flute of height 𝑛− 1 containing either 𝑎𝑖−1 or 𝑎𝑖+1 (or both !), whereby at least one
of the two is bounded above by 𝐹𝑛−1. This completes the induction step, and the proposition
follows.
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Chapter 3

Maximal values of arithmetic
frieze patterns

Definition 3.1. A ℚ-valued pattern of height 𝑛 is said to be an arithmetic frieze pattern if it
takes values in ℤ>0. We denote by Frieze(𝑛) the set of arithmetic frieze patterns of height 𝑛.

The following proposition is a key result connecting arithmetic frieze patterns to flutes.

Proposition 3.2. 1) Let 𝑓 be an arithmetic frieze pattern of height 𝑛. For all 𝑚 ∈ ℤ, the
𝑛-tuple

(𝑓(1, 𝑚), 𝑓(2, 𝑚), … , 𝑓(𝑛, 𝑚))
is a flute of height 𝑛.

2) Given a flute (𝑎1, … , 𝑎𝑛), there exists a arithmetic frieze pattern 𝑓 of height 𝑛 such that

(𝑓(1, 0), … , 𝑓(𝑛, 0)) = (𝑎1, … , 𝑎𝑛).

Proof. 1) Note that we have 𝑓(1, 0) = 𝑓(𝑛, 0) = 1 by definition. Moreover, 𝑓 is arithmetic and
so the first equation in Lemma 1.2 is precisely the divisibility condition defining a flute.

2) By arguing recursively, one can construct a pattern 𝑓 such that (𝑓(1, 0), … , 𝑓(𝑛, 0)) =
(𝑎1, … , 𝑎𝑛). Moreover, such a frieze pattern is necessarily positive and ℚ-valued. It remains to
show that 𝑓 is integer-valued. We begin by showing that 𝑓(2, 𝑚) ∈ ℤ for all 𝑚 ∈ ℤ. By the
definition of a flute, 𝑓(2, 0) ∈ ℤ, and for each 𝑖 ∈ {1, … , 𝑛 − 2}, there exists a positive integer 𝑐𝑖
such that

𝑓(𝑖 + 1, 0) ∗ 𝑐𝑖 = 𝑓(𝑖 + 2, 0) + 𝑓(𝑖, 0).
Using the first equation in Lemma 1.2, we deduce that 𝑓(2, 𝑖) ∈ ℤ for 𝑖 = 0, … , 𝑛 − 2. Moreover,
𝑓(2, 𝑛 − 1) = 𝑓(𝑛 − 1, 0) ∈ ℤ by assumption. Thus we have proved that 𝑓(2, 𝑚) ∈ ℤ for
𝑚 = 0, … , 𝑛 − 1. To see that 𝑓(2, 𝑛) ∈ ℤ, note from Lemma 1.2 that 𝑓(2, 𝑛) = 𝑓(𝑛 − 1, 1) can be
expressed as a polynomial with integer coefficients in the variables 𝑓(2, 1), 𝑓(2, 2), … , 𝑓(2, 𝑛 − 2).
The claim for all 𝑚 then follows from Proposition 1.3.

To see how this implies that 𝑓(𝑖, 𝑚) ∈ ℤ for all 𝑖 ∈ {2, … , 𝑛}, it suffices to see, again from
Lemma 1.2, that every 𝑓(𝑖, 𝑚) can be expressed as a polynomial with integer coefficients in the
variables 𝑓(2, 𝑚), 𝑓(2, 𝑚 + 1), … , 𝑓(2, 𝑚 + 𝑖 − 2).

Corollary 3.3. Fix a positive integer 𝑛. The set Frieze(𝑛) is non-empty.

5



Proof. The proof of Lemma 2.2 showed that (1, 1, … , 1) is a flute. The claim then follows from
2) of Proposition 3.2.

By combining Proposition 3.2 with Proposition 2.5, we see that for each 𝑛, there is a well-
defined positive integer, called the maximum value among arithmetic frieze patterns of height 𝑛,
defined by

𝑢𝑛 ∶= max(𝑓(𝑖, 𝑚) ∶ 𝑓 ∈ Frieze(𝑛), 𝑖 ∈ {1, … , 𝑛}, 𝑚 ∈ ℤ).
We are now able to formulate and prove the main theorem of this section.

Theorem 3.4. For all 𝑛 ≥ 1, we have

𝑢𝑛 = 𝐹𝑛.

Proof. By Proposition 3.2, every entry of an arithmetic frieze pattern of height 𝑛 belongs to a
flute of height 𝑛. By Proposition 2.5, entries in a flute of height 𝑛 are bounded above by 𝐹𝑛.
Thus 𝑢𝑛 ≤ 𝐹𝑛 for all 𝑛. On the other hand, Lemma 2.3 and 2) of Proposition 3.2 show that
there exists an arithmetic frieze pattern of height 𝑛 containing 𝐹𝑛 as a value.
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